The Stella Quadrangula as a Structure Building Unit

By Harry Nyman and Sten Andersson
Inorganic Chemistry 2, Chemical Center, PO Box 740, S-220 07 Lund, Sweden

(Received 1 May 1979; accepted 12 June 1979)

Abstract

In order to get a simple and accurate description of complex crystal structures, the stella quadrangula is used as a building unit to describe the following structures: SiF_{4}, scheelite, $\mathrm{NaZn}_{13}, \mathrm{Ru}_{7} \mathrm{~B}_{3}$ and $\mathrm{Ba}_{3} \mathrm{Fe}_{3} \mathrm{Se}_{7}$.

\section*{Introduction}

In an earlier paper (Nyman \& Andersson, 1979) we used stella quadrangula, Fig. 1, or capped versions of it, to describe some rather complex structures. Our belief that this particular unit is of considerable importance in structure building encouraged us to use it for the explanation of other alloy and ionic structures.

SiF_{4}

Atoji \& Lipscomb's (1954) X-ray determination of the crystal structure of SiF_{4} provides the following data: Space group $I \overline{4} 3 m, a=5.41 \AA, 2 \mathrm{Si}$ in $2(a) 0,0,0,8 \mathrm{~F}$ in $8(c) x, x, x$, with $x=0.165$.

This structure (Fig. 2) may be described simply as a cubic array of corner-sharing stellae quadrangulae with a Si atom in the central tetrahedron.

If d is the edge of a tetrahedron, the calculated unit cell becomes

$$
\begin{aligned}
& a=d \sqrt{2} / 2\left(\sqrt{3} \sin \frac{3}{2} \theta+1\right) \\
&=d \sqrt{2} / 2\left(\frac{5}{3}+1\right)=4 d \sqrt{2} / 3 \simeq 1.886 d
\end{aligned}
$$

Fig. 1. A stella quadrangula-a tetrahedron capped with four tetrahedra.

0567-7394/79/060934-04\$01.00
where θ, the dihedral angle of a tetrahedron, is 70.533°.

The position of the corners of the stella quadrangula is then given by

$$
x=\frac{1}{a} \frac{d}{2 \sqrt{2}}=\frac{3}{16} \simeq 0.187
$$

In this model the size and charge of Si^{4+} shrinks the central tetrahedron and consequently the stella quadrangula is distorted, but the displacement is rather small $[(0.187-0.165) \sqrt{3} \times 5.41 \simeq 0.206 \AA]$.

CaWO_{4} (Scheelite)

Many compounds crystallize with the scheelite-type structure, which is tetragonal with c / a from ~ 2.05 to ~ 2.74. The broad c / a range indicates that the structure is always more or less distorted. This structure can be described by using W-centered stellae quadrangulae which share four edges with four other units (Fig. 3).

Crystal data for CaWO_{4} : Space group $\mathrm{I} 4_{1} / a, a=$ $5.243, c=14.376 \AA, c / a=2.74$. The O atom position is $16(f) x, y, z$, with $x=0.2413, y=0.1511, z=$ 0.0861 (Kay, Frazer \& Almodovar, 1964). The structure is plotted in Fig. 4.

Fig. 2. The structure of SiF_{4}. (c) 1979 International Union of Crystallography

From an ideal framework of stellae quadrangulae the structural parameters are

$$
\begin{gathered}
a=d\left(3 \sin ^{2} \frac{3}{2} \theta+1\right)^{1 / 2}=d\left[\left(\frac{5}{3}\right)^{2}+1\right]^{1 / 2} \\
=\frac{d \sqrt{34}}{3} \simeq 1.944 d, \\
c / a=1.94, \\
c=4 d \sin \theta=d 8 \sqrt{2 / 3} \simeq 3.771 d,
\end{gathered}
$$

where θ is the tetrahedral dihedral angle.

$$
x=d \cos \alpha / 2 a=0.221 ; \quad y=d \sin \alpha / 2 a=0.132
$$

$$
z=d \sqrt{2} / 4 c=0.094 ; \quad \sin \alpha=d / a ;
$$

α is shown in Fig. 3.
When depicted on this model, the structure of LiYbF_{4} (Thoma, Brunton, Penneman \& Keenan, 1969) agrees even more closely than that of CaWO_{4} with c / a $=2.06, x=0.2166(6), y=0.1661(6), z=0.0814$ (3).
The Ca and Li ions are situated in distorted bisdisphenoids created between the stellae quadrangulae as shown in Fig. 4.*

NaZn_{13}

The crystal structure of NaZn_{13} and several isostructural compounds which were first reported by Ketelaar

[^0]

Fig. 3. The ideal scheelite structure viewed along c. For clarity some of the stellae quadrangulae are omitted.
(1937) were later refined by Shoemaker, Marsh, Ewing \& Pauling (1952). They describe this structure as facesharing Na -centered snub cubes of Zn atoms. These snub cubes also share faces with Zn -centered iscosahedra of Zn atoms. Neither the snub cubes nor the icosahedra are perfect. However, the structure can also be described in terms of a framework of slightly distorted corner-connected stellae quadrangulae which occupy the empty space between the snub cubes and the icosahedra (Fig. 5). This framework cannot be built with ideal stellae quadrangulae and Fig. 6 shows one way to distort the stella quadrangula unit in order to make it usable in the NaZn_{13} structure. The ideal stella quadrangula (full lines) is distorted to a shape indicated by dotted lines when d is rotated an angle α. In this operation c and b_{1} are lengthened and b_{2} is shortened. When $b_{2}=b_{1}$, which is achieved with $\alpha \simeq 2.45^{\circ}$, the unit can be used to build the NaZn_{13} structure. A framework of units distorted in that way gives the following parameters:

$$
\begin{aligned}
a=2 c_{1}+4 h & =2 \cdot 1192 d+2.4990 d=4.6182 d ; \\
y & =0.1718 ; z=0.1147 .
\end{aligned}
$$

A model with only ideal snub cubes gives $y=$ $0 \cdot 1761 ; z=0.1141$. These figures may be compared with the Zn position in NaZn_{13} which is $96(i) 0, y, z$, of $F m 3 c$ with $y=0 \cdot 18063, z=0.11924$ (Shoemaker, Marsh, Ewing \& Pauling, 1952). A more recent refine-

Fig. 4. The structure of CaWO_{4} seen along a. One stella quadrangula is shown and, in the lower part, one Ca -centered distorted bisdisphenoid.
ment of isostructural MgBe_{13} and CaBe_{13} (Baker, 1962) gives parameters as follows:

$$
\begin{array}{lll}
\operatorname{MgBe}_{13} & y=0.1789 ; & z=0.1143 ; \\
\mathrm{CaBe}_{13} & y=0.1769 ; & z=0.1123 .
\end{array}
$$

Both models are in good agreement with the observed structures, but as shown in Table 1, the size of unit cell and the snub cube is not determined by the large atom centering the snub cube. Instead, the size of the unit cell

Table 1. Comparison of unit cell and snub cube for several isostructural compounds

	$a(\AA)$	r_{A} / r_{B}
$\mathrm{NaZn} \mathrm{n}_{13}$	12.228	1.40
$\mathrm{KZn} \mathrm{n}_{13}$	12.360	1.72
MgBe_{13}	$10 \cdot 166$	1.41
CaBe_{13}	10.312	1.74

Fig. 5. A part of the NaZn_{13} structure, showing two face-sharing snub cubes sharing faces with three corner-connected stellae quadrangulae.

Fig. 6. The distortion of a regular stella quadrangula to make it usable as a building element in NaZn_{13}. See text.
is determined only by the structure building unit, viz the stella quadrangula.

$$
\mathrm{Ru}_{7} \mathrm{~B}_{3} \text { and } \mathrm{Ba}_{3} \mathrm{Fe}_{3} \mathrm{Se}_{7}
$$

$\mathrm{Ba}_{3} \mathrm{Fe}_{3} \mathrm{Se}_{7}$ (Hong \& Steinfink, 1972) has essentially the same structure as $\mathrm{Ru}_{7} \mathrm{~B}_{3}$, which is a trilling of h.c.p. or the $\mathrm{Fe}_{3} \mathrm{C}$ structure (Aronsson, 1959; Hyde, Bagshaw, Andersson \& O'Keeffe, 1974). Se replaces Ru and Ba takes the B position inside a tricapped trigonal prism. The Fe atoms enter the interstices, in this case three out of the four tetrahedra of a stella quadrangula. The fourth tetrahedron is slightly elongated and shares faces with three distorted trigonal prisms (Fig. 7). Thus this common structure type can be described by using stella quadrangula units. The $\mathrm{Fe}-\mathrm{Se}$ network of $\mathrm{Ba}_{3} \mathrm{Fe}_{3} \mathrm{Se}_{7}$ can be built of partly capped stellae quadrangulae which share corners, Fig. 8. This framework creates interstices in the form of columns of face-sharing empty octahedra running parallel to c, and tricapped trigonal prisms centered with Ba.

There are three different Se positions in the structure. If $\mathrm{Se}(3)$ is taken as a fixed point, then the others can be calculated assuming ideal capped stellae quadrangulae. Table 2 shows the calculated parameters compared with those given by Hong \& Steinfink (1972).

Fig. 7. A clinographic projection of a part of the $\mathrm{Ba}_{3} \mathrm{Fe}_{3} \mathrm{Se}_{7}$ structure showing a column of corner-connected partly capped stellae quadrangulae. In the lower part of the figure, two of the three surrounding trigonal prisms are shown.

Table 2. Comparison of observed and calculated parameters of $\mathrm{Ba}_{3} \mathrm{Fe}_{3} \mathrm{Se}_{7}$

The calculated unit-cell dimensions become

$$
\begin{gathered}
a=d(0.9958+\sqrt{3}+1) \simeq 2.7247 d \\
c=2 d(0.0916+\sqrt{2} / \sqrt{3}) \simeq 1.8162 d \\
c / a=0.667 ; \quad c / a(\mathrm{obs})=0.681
\end{gathered}
$$

The figures in Table 2 show fairly good agreement between the model and the observed structure. However, in the observed structure, the part of the stella quadrangula containing Fe is compressed along c, and the part sharing faces with prisms is slightly elongated. This deformation of the stella quadrangula leads to elongation of the empty octahedra in the c direction.

On the other hand, $\mathrm{Ru}_{7} \mathrm{~B}_{3}$ is better described by ideal stella quadrangula sharing corners with columns of ideal octahedra. Unit-cell dimensions for that structure model are

$$
\begin{gathered}
a=d+d \sqrt{3} \sin \frac{3}{2} \theta=d\left(1+\frac{5}{3}\right) \simeq 2.6666 d \\
c=2 d \sqrt{2} / \sqrt{3} \simeq 1.6330 d \\
c / a=0.612 ; \quad c / a(\mathrm{obs})=0.631
\end{gathered}
$$

Fig. 8. The structure of $\mathrm{Ba}_{3} \mathrm{Fe}_{3} \mathrm{Se}_{7}$. The double lines indicate how the columns of stellae quadrangulae cap each other.

Table 3. Observed and calculated parameters of $\mathrm{Ru}_{7} \mathrm{~B}_{3}$

	Calculated			Observed	
	x	z		x	z
$\mathrm{Ru}(1)$	0.458	0.318		0.456	0.318
$\mathrm{Ru}(2)$	0.125	0.985		0.122	0.000
$\operatorname{Ru}(3)$	$1 / 3$	0.818		$1 / 3$	0.818

In Table 3 observed and calculated parameters are given for $R u_{7} B_{3}$. The agreement for $R u_{7} B_{3}$ is remarkable; the deviations in x are within the estimated accuracy of the structure determination but in z are significant, although still very small, viz 0.07 A. Comparing the figures in Tables 2 and 3 shows what might be expected; the alloy $\left(\mathrm{Ru}_{7} \mathrm{~B}_{3}\right)$ is closer to the ideal structure than is the ionic compound $\mathrm{Ba}_{3} \mathrm{Fe}_{3} \mathrm{Se}_{7}$.

This work was sponsored by the Swedish Natural Science Research Foundation.

References

Aronsson, B. (1959). Acta Chem. Scand. 13, 109-114.
Atoil, M. \& Lipscomb, W. N. (1954). Acta Cryst. 7, 597.
Baker, T. W. (1962). Acta Cryst. 15, 175-179.
Hong, H. Y. \& Steinfink, H. (1972). J. Solid State Chem. 5, 92-104.
Hyde, B. G., Bagshaw, A. N., Andersson, S. \& O’Keefe, M. (1974). Ann. Rev. Mater. Sci. 4, 43-92.

Kay, M. I., Frazer, B. C. \& Almodovar, J. (1964). J. Chem. Phys. 40, 504-506.
Ketelaar, J. A. A. (1937). J. Chem. Phys. 5, 668.
Nyman, H. \& Andersson, S. (1979). Acta Cryst. A35, 580-583.
Schubert, K. (1964). Kristallstrukturen zweikomponentiger Phasen. Berlin: Springer-Verlag.
Shoemaker, D. P., Marsh, R. E., Ewing, F. J. \& Pauling, L. (1952). Acta Cryst. 5, 637-644.

Thoma, R. E., Brunton, G. D., Penneman, R. A. \& Keenan, T. K. (1969). Inorg. Chem. 9, 1096-1101.

[^0]: * Prior to this publication, Dr Paul M. Skarstad had pointed out to us that the CaWO_{4} structure can also be derived by using empty edge-sharing tetrahedra. This is in principal the same description.

